EVALution-MAN: A Chinese Dataset for the Training and Evaluation of DSMs

نویسندگان

  • Hongchao Liu
  • Karl Neergaard
  • Enrico Santus
  • Chu-Ren Huang
چکیده

Distributional semantic models (DSMs) are currently being used in the measurement of word relatedness and word similarity. One shortcoming of DSMs is that they do not provide a principled way to discriminate different semantic relations. Several approaches have been adopted that rely on annotated data either in the training of the model or later in its evaluation. In this paper, we introduce a dataset for training and evaluating DSMs on semantic relations discrimination between words, in Mandarin, Chinese. The construction of the dataset followed EVALution 1.0, which is an English dataset for the training and evaluating of DSMs. The dataset contains 360 relation pairs, distributed in five different semantic relations, including antonymy, synonymy, hypernymy, meronymy and nearsynonymy. All relation pairs were checked manually to estimate their quality. In the 360 word relation pairs, there are 373 relata. They were all extracted and subsequently manually tagged according to their semantic type. The relatas’frequency was calculated in a combined corpus of Sinica and Chinese Gigaword. To the best of our knowledge, EVALution-MAN is the first of its kind for Mandarin, Chinese.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EVALution 1.0: an Evolving Semantic Dataset for Training and Evaluation of Distributional Semantic Models

In this paper, we introduce EVALution 1.0, a dataset designed for the training and the evaluation of Distributional Semantic Models (DSMs). This version consists of almost 7.5K tuples, instantiating several semantic relations between word pairs (including hypernymy, synonymy, antonymy, meronymy). The dataset is enriched with a large amount of additional information (i.e. relation domain, word f...

متن کامل

A Review of New Methods Assessment in Clinical Education of Medical Science Students

Introduction: Clinical education is an important part of education in medical sciences. One of the most important barriers to clinical education is the problems with the evaluation system. Studies with controversial results have been conducted in the field of clinical evaluation methods. The purpose of this study was to systematically review the research done to determine the appropriate clinic...

متن کامل

Distributional Semantics for Answer Re-ranking in Question Answering

This paper investigates the role of Distributional Semantic Models (DSMs) into a Question Answering (QA) system. Our purpose is to exploit DSMs for answer re-ranking in QuestionCube, a framework for building QA systems. DSMs model words as points in a geometric space, also known as semantic space. Words are similar if they are close in that space. Our idea is that DSMs approaches can help to co...

متن کامل

Predicting the Compositionality of Nominal Compounds: Giving Word Embeddings a Hard Time

Distributional semantic models (DSMs) are often evaluated on artificial similarity datasets containing single words or fully compositional phrases. We present a large-scale multilingual evaluation of DSMs for predicting the degree of semantic compositionality of nominal compounds on 4 datasets for English and French. We build a total of 816 DSMs and perform 2,856 evaluations using word2vec, Glo...

متن کامل

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016